Course Specifications

Program: M.Sc. Inorganic Chemistry (major)

Level: Graduate

A. Basic Information

Title: Symmetry and Chemical applications

Code: CH6219 Credit hours: 2 h
Lecture: 2h/week Tutorial: 0 Practices:

Academic year: 2012

B. Professional Information:

- 1. Overall Amis of the course: by the end of the course the student will be able to
 - Use of symmetry argument to the typical experimental chemistry.
 - Study applications of symmetry in chemistry
- 2. Intended Learning outcomes of the course (ILOs), after completing this course the student will be able to:
 - i. know and understand:
 - identify symmetry elements and operations
 - discuss the symmetry point group
 - present some immediate applications
 - illustrate properties of the groups and their elements
 - show similarity Transforms, Conjugation, and Classes
 - present matrices and Vectors
 - state matrix Representation of Symmetry Operation
 - clarify matrix Representation of Point Group
 - differentiate between reducible and Irreducible Representations
 - discuss motion representations of the groups
 - show character Tables
 - Recognize properties of the Characters of Representations
 - Clarify relation between any reducible representation of a group and the irreducible representations of that group

ii. gain intellectual skills such as:

- analyze hybridization of atomic orbitals
- illustrate symmetry Adapted Linear Combination (SALC)
- discuss symmetry Aspects of Molecular Orbital Theory
- explain symmetry and Ligand Field

iii. have professional and practical Skills such:

- interpret vibrational Rotational spectroscopy
- illustrate symmetry and Electronic Spectroscopy

iv. obtain general and transferable skills like:

- show bond strength and stereochemistry
- intending students to theoretical chemistry

3. Content

Topic	No. of	Lecture	Tutorial/Practica
	hours		
Definitions and Theorems of	2	1	0
Group Theory			
Molecular Symmetry and	6	3	0
the Symmetry Group			
Representations of Groups	4	2	0
Group Theory and	1	2	0
Quantum Mechanics			
Hybrid Orbitals and	2	4	0
Molecular orbitals for AB _n -			
type Molecules			
Symmetry Adapted Linear	1	2	0
Combination (
Molecular Vibrations	4	2	0
Symmetry and Electronic	4	2	0
Spectroscopy			

4. Teaching and Learning Methods:

Lectures, assignment and discussion

5. Student Assessment Methods:

written exam, open book exam and quizzes

Assessment Schedule

Assessment 1: on the fourth week
Assessment 2: on the sixth week
Assessment 3: on the ninth week
Assessment 4: on the tenth week
Assessment 5: on the twelfth week
Assessment 6: on the fourteenth week

Weighting of Assessments

Mid – Term Examination and oral exam:20%Semester work:20%Final – Term:60%Total:100%

6. List of References:

a- Text books

- F. A. Cotton: Chemical application of Group theory
- B. P. Lever: Inorganic Electronic spectroscopy
- C. Harris & M. D. Bertolucci: Symmetry and spectroscopy

7. Facilities Required for Teaching and Learning:

overhead projector, audio video projector, field visits and data show

Course Coordinator: Joseph J. Stephanos, Assoc. Prof. Head of Department: Prof. Ahmad Abd El Migid

Date: 2012